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Impedance control

• Robots also interact with the environment without the need to 
control interaction forces. But the controller must be at least aware 
that contact may happen and be ready to react.

Video source: Youtube



Impedance control

• Assume the robot is a point mass sliding on the table without friction, 
which is controlled with a PD position controller. What is the effect of an 
external force?

• Assuming there is no reference, we obtain:
• 𝑚 ሷ𝑞 + 𝐷 ሶ𝑞 + 𝐾𝑞 = 𝜏𝑒

• which is the dynamic equation of a mass-spring-damper system.
• NOTE: we can adjust the spring and the damping parameter, but not the 

mass.
• With the dynamic model of the robot given as 𝒇𝒅 𝒒, ሶ𝒒, ሷ𝒒 , a possible 

control approach is:

m 𝑞, ሶ𝑞𝑢
𝜏𝑒

𝑚 ሷ𝑞 = u

𝑢 = 𝐾 𝑞𝑑 − 𝑞 + 𝐷 ሶ𝑞𝑑 − ሶ𝑞 + 𝜏𝑒

𝑢 = 𝐾 𝑞𝑑 − 𝑞 + 𝐷 ሶ𝑞𝑑 − ሶ𝑞 + 𝜏𝑒 + 𝑓𝑑(𝑞, ሶ𝑞, ሷ𝑞)



Cartesian impedance control 

𝑓 = 𝑀∆ ሷ𝑥 + 𝐷𝑘∆ ሶ𝑥 + 𝐾𝑘∆𝑥



Principle of Impedance control

• Inner loop: compliant

• Outer loop: increases stiffness



Cartesian Impedance Control

• For a non-redundant, non singular robot with torque interface a simple PD 
controller in Cartesian coordinates can do the job.

• Cartesian PD-Controller with gravity compensation 
• 𝐹 = 𝐾𝑃 𝑥𝑑 − 𝑥 − 𝐾𝑑 ሶ𝑥

• Transformation of the desired Cartesian Forces to desired joint torques
• 𝜏 = 𝐽𝑇 𝑞 𝐹 + 𝑔 𝑞 + 𝜏𝑁

• Null-space torque component for a redundant robot
• 𝜏𝑁 = 𝐼 − 𝐽𝑇𝐽𝑇# 𝜏0
• 𝜏0 is an arbitrary joint space torque

• Pseudoinverse has the property 𝐽#𝑇𝐽𝑇 = 𝐼



Cartesian Impedance Control Example
• In contact: environment imposes position, controller wants to impose 

position… 

High gains
• High tracking accuracy
• High impact forces 

Low gains
• Low tracking accuracy
• Low impact forces 

How about high tracking accuracy and 
low impact forces? „Accurate dynamic 
model is required!“



Impedance control

• In general we would like to have:
• Good tracking performance, when there is no external force;
• High reactivity (compliance), when external forces are applied.

• These two requirements are conflicting, in fact:
• If we increase the gains, we obtain good tracking performance, but the system is 

robust with respect to external disturbances;
• If we decrease the gain, the system accommodates for external forces, but the 

positioning performance are lower.

• What shall we do to obtain both?
• Accurate dynamic model, for exampel use Compliant Movement Primitives;
• or we can use high gains and modify the reference position! (Admittance control)



How to set impedance?
Human-robot collaboration for skill synthesis



The paradigm
• Use human sensorimotor learning ability to obtain robot 

behaviors 
• Include the human in the control loop

• May ask human to do extensive training

• Utilize the human brain as the adaptive controller

Motor command (u)

Robot state (s)

Human Motion (m) 

Feedback to human 
sensory system (f) 

Feedforward
Interface

Human
~Adaptive Controller

Feedback
Interface



Skill synthesis for autonomy

For autonomous operation, the key 
issue is transferring the control 
policy learnt by human to the robot

Motor command (u)Human Motion (m) 

Robot state (s)

Feedback to human 
sensory system (f) 

Human
~Adaptive Controller

Feedforward
Interface

Feedback
Interface

Robot Learning: 
Learn π: s → u



Why should this paradigm work?

• The ability of the brain to learn novel control tasks by forming internal 
models. The robot can be considered as a tool (e.g. as driving a car, 
playing an instrument, using chopsticks)

• The flexibility of the body schema; extensive human training modifies 
the body schema so that the robot can be naturally controlled





Teleoperation using EMG and MOCAP 
interface

• Real time transfer of:
• tutor‘s hand position to robot‘s end-

effector position 

• tutor‘s muscle activity to robot‘s end-
effector compliance





How to improve tracking 
accuracy when low impedance 
controlled is used?
Compliant movement primitives - CMPs



Compliant Movement Primitives

Robot

DMP
Feedback 
controller

+

+

Inverse 
Dynamics

𝑞𝑑

𝜏

𝑞

TP
𝜏𝑓

• CMP – Compliant Movement Primitive

• Iterative learning process using low feedback gains

• Dynamic model of the task is not required

• We propose a controller

𝛕𝐮 = 𝐊 𝒒𝒅 − 𝒒 + 𝑫 ሶ𝒒 + 𝒇𝒅 𝒒, ሶ𝒒, ሷ𝒒 + 𝝉𝒇



Compliant Movement Primitives

• We define complaint movements as a combination of desired position 
trajectories and corresponding torque signals :

𝒉 𝑡 = 𝒒𝑑 𝑡 , 𝝉𝑓 𝑡

• Human demonstration is used to gain a set of example motion trajectories

𝑸𝑥 = 𝒒𝑥1 𝑡 , 𝒄𝑞1 , 𝒒𝑥2 𝑡 , 𝒄𝑞2 , … , 𝒒𝑥𝑁 𝑡 , 𝒄𝑞𝑁 ,

where 𝒄 denotes task descriptors, i.e., query points.

• Motion trajectories are encoded as DMPs



Compliant Movement Primitives

• With the dynamic model given as 𝒇𝒅 𝒒, ሶ𝒒, ሷ𝒒 , we propose a controller:

𝛕𝐮 = 𝐊 𝒒𝒅 − 𝒒 + 𝑫 ሶ𝒒 + 𝒇𝒅 𝒒, ሶ𝒒, ሷ𝒒 + 𝝉𝒇

• Corresponding torques are gained by using iterative recursive regression with cost

𝒆𝑟 = 𝐉𝑇 𝛼 𝒙𝑑 − 𝒙 + 𝛽 ሶ𝒙𝑑 − ሶ𝒙

• A set of example torques is gained

𝑻𝑥 = 𝝉𝑥1, 𝒄𝜏1 , 𝝉𝑥𝟐, 𝒄𝜏2 , … , 𝝉𝑥(𝑁𝑀), 𝒄𝜏(𝑁𝑀)

• Torque trajectories are encoded as a linear combination of basis functions

𝜏𝑥 𝑠 =
σ𝑖=1
𝑁 𝑤𝜏𝑖𝜓(𝑠)

σ𝑖=1
𝑁 𝜓(𝑠)



CMP Task Learning 

• CMP is defines a task as a pair of signals: 𝒉 𝒕 = 𝒒𝒅 𝒕 , 𝝉𝒇 𝒕

• Three step process:

1. Motion trajectory 𝒒𝒅 𝒕 is gained 
by human demonstration

2. Iterative leaning of torque primitives 
𝝉𝒇 𝒕 . Learning is updated based on 

kinematic trajectory

3. Movement and torque primitive 
are gained, stored and possibly 
executed. 



Evaluation  - tracking error 

• Pick and place task using a Kuka LWR robot with a BarrettHand

• The task was learned for 3 object weights varying for 2 kg

• The task was executed with varying stiffness using
• Feedback control

• Proposed control using learned task-specific dynamics



Evaluation - tracking error 

• Maximum error for each task:

𝑒𝑚 = max( 𝒑 𝑡 − 𝒑𝒅 𝑡 ).

 Tracking error is 
marginal with 
stiffness  >50

 This low stiffness 
value was selected 
for collision 
evaluation



Evaluation – unexpected collision

• A simple downward task was learned

• Unexpected collision with an object

• Three different control approaches

• High gain feedback 

• Low gain feedback

• Proposed approach







Exoskeleton control
Learning from and like humans 

Human and robot are 
physically coupled!!!



Robot joint
positions

Adaptive
Controller

Feedforward
interface

Feedback
Interface

Human joint
positions

training data training data

Robot joint
torques

Human joint
torques

Exoskeleton-robot interaction



Exoskeleton control

• Trajectory was updated with the use of human 
biofeedback signal

• Human muscle activity from each of the antagonist 
muscle groups that operate a certain joint by the 
means of electromyography (EMG) was used

𝑪

AFO CMP




