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Robot manipulators

Robot is seen as (open) kinematic chain of rigid bodies interconnected
by (revolute or prismatic) joints.
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Parameterization:

Unambiguous and minimal characterization
of the robot configuration

n = degrees of freedom (DOF)
n = robot joints (rotational or translational)

Configuration on n-DOF robot is described by joint coordinates

q = [q1, q2, . . . , qn]T qi ∈ Qi = [qi,min, qi,max]

The configuration space C is the space where the joint variables q are
defined

C : Q1 ×Q2 × · · · ×Qn
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Robot pose

End-effector position (operational
point) in base coordinate frame Fb:

Te =

[
R(q) p(q)
0 1

]

The operational space O is space, where the positions/orientations of the
robot end-effector are defined (6-dimensional Cartesian space).

Reachable workspace: is the set pf all p where the robot can reach all
positions with at least one orientation

Dextrous workspace: is the set of all p where the robot can reach all
positions with any feasible orientation
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Redundant robots

A robot is redundant if it has more degrees-of-freedom (DOF) than
needed to accomplish a task.

Two types of redundancy can be identified:

• Serial robots that have a joint-space
dimension greater than their operational-
space dimension are termed intrinsically
redundant

ri = dim(C)− dim(O)

• A robot is termed functionally redundant
if the task does not use all operational-
space dimensions, T ⊂ O

rf = dim(O)− dim(T )
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Task space

Task space T ⊆ O is the space where the operation of robot is required.

DOFs needed for some common tasks:

m = 2

• pointing in space
• positioning in plane

m = 3

• orientation in space
• positioning and orientation in plane

m = 5

• positioning and pointing in space

m = 6

• positioning and orientation in space
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Kinematics of redundant robot

Forward kinematics of redundant robots is given in the form

ẋ(m×1) = J(m×n)q̇(n×1) m < n

Inverse kinematics problem is now to solve this set of equations. The
system is underconstraint and can be solved by choosing some additional
constraints. The solution is of the form

q̇ = J†ẋ

where J† is some generalized inverse of J, e.g. any matrix satisfying

JJ†J = J

Note: Generalized inverse always exists.
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Least-norm solution

Consider:
y = Ax

where x ∈ Rn, y ∈ Rm, A ∈ Rm×n, and m < n (We have more variables than
equations).

Optimization problem:

min ‖y‖ subject to: Ay = x

Assume A has full row rank, R(A) = m. Then the solution has form:

{x | Ax = y} = {xp + z | z ∈ N (A)}

One particular solution is

xp = AT (A AT)−1y
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Pseudo-inverse

Most commonly used pseudo-inverses are Moore-Penrose pseudo-inverse
(minimal joint velocities)

J† = JT(JJT)−1

or weighted pseudo-inverse

J† = W−1JT(JW−1JT)−1

where W is a weighting matrix.

Special case when W = H ⇒ dynamic consistent pseudoinverse.

This solution J† can become inefficient and fails near singularities. When
the robot approaches a singular configuration, very high joint velocities are
required even for small task space velocities in the directions which become
unfeasible in the singularity.
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Damped least-squares inverse

From the mathematical point of view, the Jacobian J becomes near singular
configuration ill-conditioned (some singular values of J become very small).

Solution is the damped least-squares inverse (DLS)

J
∗

= W−1JT(JW−1JT + λ2I)−1

where λ is the damping factor. The additional damping term λ2I decreases
the task space accuracy in favor of feasible joint velocities.

J
∗

does not fulfill all Moore-Penrose conditions, e.g.

JJ
∗
J 6= J

Hence, the DLS inverse J
∗

should not be used in the calculation of the
null-space projectors.
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General inverse kinematics solution

The question is now, how to incorporate any constraints in the general
solution given in the form

q̇ = J†ẋ+ (In − J†J)ϕ̇

where In is identity matrix and ϕ̇ an arbitrary vector.

The term J†ẋ represents the particular solution which satisfies the main task
and any ”rigid” constraints depending on the selected generalized inverse.

To find a suitable generalize inverse J† we specify some performance
criterion. By finding the optimum of this criterion we get the desired
generalized inverse.
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General inverse kinematics solution . . .

q̇ = J†ẋ+ (In − J†J)ϕ̇

The term (In − J†J)ϕ̇ is the homogenous solution and serves to purely
reconfigure the robot arm without affecting the task.

The homogenous solution is typically used to achieve some additional goals,
i.e. different joint velocities q̇ can be obtained, which result in the same
end-effector velocity ẋ. Tipically, it is used for

• obstacle avoidance
• some kind of optimization
• singularity avoidance
• joint limits avoidance
• pose control
• . . .
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Some performance measures

Manipulability

A commonly used measure is the manipulability measure defined as

w =
√
σ1σ2 · · ·σm =

√
det(JJT)

Condition number

The condition number ρ is the ratio between the maximal and the minimal
singular value of J.

ρ =

√
σmax

σmin
∇ρ =

1

2ρ

σmin ∇σmax − σmax ∇σmin

σmin
2

Gravity torques norm

Considering only the gravity, the performance measure p representing the
weighted norm of joint torques can be expressed as

p = g(q)TWg(q) ∇p(q) = 2

(
∂g(q)

∂q

)T
Wg(q)
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Control at the kinematic level

For velocity control the following kinematic controller can be used:

q̇c = J+ẋc + Nϕ̇ N = (I− J+J)

Primary task: end-effector position ẋc:

ẋc = ẋE + Kp(xE − x)

Secondary tasks: we use joint velocities ϕ̇ (self motion).
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Example: Kinematic control - Planar 4R

Task space: PTP motion, kinematic control using Moore-Penrose
pseudoinverse.

Null-space: Optimization of robot pose by maximizing manipulability
(avoiding singular configurations))

ãã àà ùp 3 7



Control at the dynamic level

Using the acceleration formulation we can use the following dynamic
controller

τ = H(J̄(ẍc − J̇q̇) + N̄(φ+ ˙̄Jẋ) + h + g

Primary task: end-effector acceleration (position) ẍc

ẍc = ẍd + Kvė+ Kpe

Secondary tasks: we use joint velocities ϕ̇ (self motion)

φ = ϕ̈+ KnN̄(ϕ̇− q̇)

By selecting proper controller parameters the following dynamic properties
can be achived

Λë+ ΛKvė+ ΛKpe = −F

Hnën + HnKnėn = −N̄TτF

Effective inertia matrix in N: Hn = N̄THN̄ = H− JTΛJ
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Example: Dynamic control - Planar 4R

Task space: PTP motion, dynamic control using inertia-weighted
pseudoinverse.

Null-space: Optimization of robot pose by maximizing manipulability
(avoiding singular configurations)
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Control of functional redundant robots

Some task do not require controlled motion in all spatial directions.

Example:
The motion of the ring is free
around the hoop, so we can
remove rotation around the
x-axis from the task control.

ẋ =


ẋ
ẏ
ż
ωx
ωy
ωz


The problem is when the ring is moved along the hoop and the control is
not adequate anymore.

ãã àà ùp 3 7



Control of functional redundant robots . . .

To exploit the available functional redundancy it is necessary to find a task
frame where the redundant DOFs are rows of the Jacobian matrix.

If the task frame is changing along the task path, we have to consider this
in the control.

Mapping between the path
frame Sp and base frame Sb
(only rotation)

R̃t =

[
Rt 03×3

03×3 Rt

]

We map the control into the workspace which is anchored on the path

q̇c = (R̃T
t J)#

(
R̃T
t

[
Kpep + ṗd
Koeo + ωd

])
+ (I− (R̃T

t J)#R̃T
t J)q̇n ,
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Control of functional redundant robots . . .

q̇c = J†
[

Kpep + ṗd
Koeo + ωd

]
Let assume that for the tasks the linear motion in direction of y-axis and
orientation around z-axis is not important.

q̇c =


J11 · · · J1n

J21 · · · J2n

J31 · · · J3n

J41 · · · J4n

J51 · · · J5n

J61 · · · J6n



#


Kp

 ep,x
ep,y
ep,x

+

 ṗd,x
ṗd,y
ṗd,z



Ko

 eo,x
eo,y
eo,z

+

 ω̇d,x
ω̇d,y
ω̇d,z




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Control in the path space

Free DOF is the rotation around path (rotation axis is in the direction of
y-axis of path space - y-axis of the Sp connected to the path).
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LWR hoop - Obstacle avoidance
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Multiple tasks

Modern robots should be able to perform multiple tasks simultaneously
(controlling motion of multiple points on the robot structure, stability,
obstacle avoidance,. . . ).

Feasibility of all goals at the same time depends on the robot (dexterity,
configuration), and on the goals.

If it is not possible to satisfy all the goals simultaneously the task have to
be ordered by the relevance. The priority indicates how important a task
is compared to others.

Note: Priority of the tasks can change during execution.
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Tasks definition

The robot has to perform multiple tasks, which are defined as

Ti : xi = fi(q), i = 1, . . . , k

or are asociated with the optimization of some performance index p

Ti : q̇i = k∇p(x, q, t)

Tasks used in examples:

• position of the end-effector
• obstacle avoidance (velocity of closest points)
• stability (position of COM)
• optimal pose (middle of joint range)

For each of these tasks a corresponding differential kinematics can be
defined

q̇i = J†iẋi + (I− J†iJi)q̇n,i
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Generalized method for multiple tasks

The basic principle it used uses the null space projector to add the motion
of the lower-priority task to the main task.

To generalize this approach for multiple priority ordered tasks many
formulations can be used:

• successive approach – using recursion
• augmented approach – using augmented Jacobian and recursion
• extended Jacobian approach
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Successive approach

The velocities ẋi associated with a task i are first transformed to
corresponding joint velocities and then projected in the null space of the
next higher-priority task.

q̇ = J†1ẋ1 + (I− J†1J1)(J†2ẋ2 + (I− J†2J2)(J†3ẋ3 + . . . )))

q̇ = J†1ẋ1 +
k∑
i=2

(
i−1∏
j=1

(I− J†jJj))J†kẋk


The task priority decreases with index i.
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Augmented approach

The velocities for the the lower-priority tasks are projected in the null space
of the augmented Jacobian considering all higher-priority tasks.

q̇i = q̇i−1 +
(
Ji(I− J†A,i−1JA,i−1)

)†
(ẋi − Jiq̇i−1) q̇1 = J†1ẋi

Augmented Jacobian for the task i

JA,i =
[
JT1 ,J

T
2 , · · · ,JTi

]T
The execution of the i-th task does not disturb the i− 1 tasks with higher
priority. Of course, the motion is possible only in the directions which are
not the range of J†A,i−1.

Note: The i-th task can not be fulfilled completely except if the task
is independent of all higher-priority tasks.
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Priority based on null-space

q̇ = J†ẋ+ (In − J†J)ϕ̇

Primary: Tracking
Secondary: Obstacle

q̇ = J†ẋ+ (In − J†J)ϕ̇

Primary: Obstacle
Secondary: Tracking

q̇ = J†ẋ+ (In − αJ†J)ϕ̇

Primary: Obstacle
Secondary: Tracking
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Extended Jacobian method

The concept is to treat the tasks equally.

q̇ = J#
E ẋE + (I− J#

E JE)ϕ̇

All tasks are stacked into the extended task vector

xE =
[
xT1 ,x

T
2 , · · · ,xTk

]T
Extended Jacobian is given in the form

JE =
[
JT1 ,J

T
2 , · · · ,JTk

]T
The homogenous part of solution can be used to fulfill lower priority tasks.
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DLS extended Jacobian method

The extended Jacobian strategy for the calculation of joint velocities in
case of multiple prioritized tasks presented in previous sections successfully
solve the inverse kinematic problem when the system of equation is not
ill-conditioned.

If the rank of JE equals the dimension of all tasks, then the solution results
in q̇ which fulfill all tasks. It is likely that during the execution of multiple
tasks the manipulator moves toward the configuration where one of the
Jacobian matrices composing JE is near singularity and consequently, the
obtained joint velocities q̇ become unfeasible.

q̇ = J#
E ẋE + (I− J̌#

E JE)ϕ̇

J#
E = JTE(JEJTE + λ2I)−1

J̌#
E = JTE(JEJTE)−1
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Extended priority damped least-squares method

If the rank of the extended Jacobian JE is not sufficient regarding the
dimensions of all tasks then Extended Jacobian method results in a best
fit (in a least-squares sense) solution. As all tasks are treated equally, it is
not possible to prioritize some of the tasks in favor of others.

The basis of a novel method is a combination of the extended Jacobian
approach and the damped least-squares inverse technique

J#
E = JTE(JEJTE + λ2P)−1

and P is a diagonal matrix

P =


p1I1 0 . . . 0
0 p2I2 . . . 0
... ... . . . ...
0 0 . . . p1Ik


where pi are scalars depending on the desired
priority of the task Ti.

ãã àà ùp 3 7



Example: Stability and tracking

q̇ = J†ẋ+ (In − J†J)ϕ̇

Primary: Tracking
Secondary: Stability

q̇ = J†ẋ+ (In − J†J)ϕ̇

Primary: Stability
Secondary: Tracking

q̇ = J#
E ẋE+(I− J̌#

E JE)ϕ̇

Primary: Stability
Secondary: Tracking
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Example: Stability and obstacle avoidance

q̇ = J†ẋ+ (In − J†J)ϕ̇

Primary: Obstacle
Secondary: Stability

q̇ = J†ẋ+ (In − J†J)ϕ̇

Primary: Stability
Secondary: Obstacle

q̇ = J#
E ẋE+(I− J̌#

E JE)ϕ̇

Primary: Stability
Secondary: Obstacle
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Example: Multi-arm - Stability and tracking

Robot arms can not reach both targets at the same time. Stability of the
robot has to be preserved.
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Obstacle avoidance

Obstacle avoidance (or collision avoidance) is the problem of assuring
that the robot does not collide with any objects during the task execution.

The natural strategy to avoid obstacles would be to move the manipulator
away form the obstacle into the configuration where the manipulator is not
in the contact with the obstacle.

Without changing the motion of the end-effector, the reconfiguration of
the manipulator into a collision-free configuration can be done only if the
manipulator has redundant degrees-of-freedom (DOF).
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The flexibility depends on the degree-of-redundancy (DOR), i.e. on the
number of redundant DOF. A high DOR is important especially when the
manipulator is working in an environment with many potential collisions
with obstacles.

The obstacle avoidance problem may be treated in two ways:

Off-line strategy: global, a path planning problem

In determined environment it is possible to plan in advance a collision
free path.

On-line strategy: local, treating the obstacle avoidance as a control
problem

The strategy is to move the manipulator away form the obstacle without
interrupting the task.
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Path planning

The task is to move the robot
end-effector from point A to
point B.

We assume there are no joint limits

Configuration space: CS : [−π, π]× [−π, π]

Some obstacles are in workspace of the robot.

ãã àà ùp 3 7



The collision avoidance task is to find a path from an initial safe
configuration to some safe final configuration:

1. Find the empty space ES, i.e. all configurations where no collisions
occur.

2. Find any connected continuous curve (path) in ES

There are many methods, how to find the path from initial point A to the
final point B. One of the methods is based on potential fields
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Obstacle avoidance as control problem

Assumptions:

• collision free path is already defined
• end-effector is not disturbed by any obstacle
• a sensory system detects obstacles during motion
• robot has enough DOR

Control tasks:

• to identify the points on the robot arm
which are near obstacles
• to assign to them motion component

that moves them away
• the end-effector motion should not be

disturbed

Critical points

Task path

Obstacle

Obstacle

Desired
motion
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Velocity strategy . . .

Exact solution (common approach):

q̇c = J+ẋc + (JoN)+(ẋo − JoJ+ẋE)

Exact solution (redefined space):

q̇c = J+ẋc + (JdoN)+(ẋo − JoJ+ẋE)

Approximate solution:

q̇AP = J+ẋc + NJ+
do
ẋo
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Obstacle avoidance using virtual forces

τc = HJ̄(ẍd + Kvė+ Kpe− J̇q̇) + h+ g + τF

As we are using virtual forces, only torques which do not influence the
end-effector motion are considered

τF = NTτo = NTJToFo

For more obstacles we use:

τo =
no∑
i=1

JTo,iFo,i

ãã àà ùp 3 7



Obstacle avoidance using impedance control

Critical points

Obstacle

Obstacle

xe
.

FoFo

Ao

Jo

do Fo1Fo1

Influence of force Fo on joint
torques:

τo = JToFo

Jo =
[
J̃o 0m×(n−i)

]

τc = H(J̄(ẍd + Kvėx + Kpex − J̇q̇) + N̄(ϕ̈+ Knėn + ˙̄Jẋ)) + h+ g

Robot dynamics in operational space:

ëx + Kvėx + Kpex = −JH−1JToFo

Self-motion dynamics:

N̄(ën + Knėn) = −N̄H−1JToFo
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Obstacle avoidance using impedance control . . .
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