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Humans
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Robot‘s

1. Petrič, Tadej, et al. "Navigation methods for the skiing robot." International Journal of Humanoid Robotics (2013).
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How to bridge the gap?

• Robots should learn more from humans

– Learning by demonstration

– Human in the loop learning

– Learning task relevant information, e.g. impedance

• Robots should learn more like humans

– Learning internal dynamic models 

– Learning task specific dynamics

Robots should do both to work better with humans
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ROBOTS SHOULD LEARN FROM 

HUMANS
Teaching robots by using them as tools

• L. Peternel, T. Petrič, E. Oztop and J. Babič. "Teaching robots to cooperate with humans in dynamic manipulation tasks based on multi-modal human-in-the-loop approach“ Autonomous robots, 2014

• L. Peternel, T. Petrič and J. Babič, ”Robotic assembly solution by human-in-the-loop teaching method based on real-time stiffness modulation” Autonomous Robots, 2017
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Learning concept

Peternel, Luka, et al. "Teaching robots to cooperate with humans in dynamic manipulation tasks based on multi-modal human-in-the-loop approach." Autonomous robots (2014).
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Learning from Humans - Sawing
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ROBOTS SHOULD LEARN LIKE HUMANS
Applying neuromechanical insights to robots

• T. Petric, A. Gams, L. Colasanto, A. J. Ijspeert, and A. Ude, “Accelerated Sensorimotor Learning of Compliant Movement Primitives” IEEE Transactions on Robotics, 2018

• Denisa, A. Gams, A. Ude, and T. Petric, “Learning Compliant Movement Primitives Through Demonstration and Statistical Generalization” IEEE/ASME Trans. Mechatronics, 2016.
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Humans

• Krakauer, et al. (1999), Nature Neuroscience: 

– … hand kinematics are learned from errors in extent and direction in an extrinsic 

coordinate system, whereas dynamics are learned from proprioceptive errors in 

an intrinsic coordinate system… 
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Compliant movement primitives

• CMP defines a task as a pair of signals: 𝒉 𝒕 = 𝒒𝒅 𝒕 , 𝝉𝒇 𝒕

• Three step process

1. Motion trajectory 𝒒𝒅 𝒕 is learned 

by human demonstration 2. Iterative leaning of torque primitives 

𝝉𝒇 𝒕 is updated based on kinematics 3. Movement and torque primitives 

are learned, stored and executed



11

Crank turning
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IF ROBOTS COULD DO BOTH 

COLLABORATION WILL IMPROVE
Utilizing neuromehanical models with robots that learn from and like humans.
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Robot control for enhanced collaboration

• Robots and humans collaborate in such a way as to enhance and emphasize the 

qualities of each other

• Humans will: 

• Improve speed-accuracy trade-off (Fitts’ law)

• Extend the efficient workspace (Manipulability)

• Reduce the variability of motion

• Robots gain:

• Workload

• Proprioception

• Cognition
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HOW FITTS’ LAW IMPROVES HUMAN-

ROBOT COLLABORATION ?
By predicting how much it takes to reach the target.

• T. Petrič, M. Cevzar, and J. Babič. "Utilizing speed-accuracy trade-off models for human-robot coadaptation during cooperative groove fitting task.“ IEEE Humanoids 2017

• T. Petrič, and J. Babič. "Cooperative human-robot control based on Fitts' law." IEEE Humanoids 2016
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Fitts’ law

• Fitts’ law tells us how log it will take to move form a 

specific position to reach different targets.

• Targets that are larger and closer are easier to hit than 

ones that are smaller and further away. 

• Fitts’ law can be used to predict how long it takes to 

reach a target. 

• There is a linear relationship between MT (Movement 

time) and the ID (Index of difficulty)

𝑀𝑇 = 𝑎 + 𝑏 ∗ 𝐼𝐷
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Index of difficulty

• The ID can be expressed in different ways.

• The following is an ISO standard expression for the 

ID. It is also known as the ‘Shannon formulation’:

𝐼𝐷 = log2(
𝐷

𝑊
+ 1)

It follows: The bigger and closer the target, the easier 

is to reach. 



17

Human-robot motion prediction based on Fitts’ law

• Fitts‘ law:

• The recursive least squares updates for 

the Fitts’ law are given by
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Fitts‘ law adaptation
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Movement adaptation

Adaptation of DMP weights for one subject during
one session. The initial weights are in orange and
the final weights are in blue. The intermediate steps
are indicated with shades of gray.

Comparison of human and robot trajectories for the
initial trial (left plot) and trial after the finished
adaptation of the movement profiles and Fitts’ law
parameters (right plot).
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HOW DO HUMANS INTERACT WITH THE 

BOUNDARY OF A HARD CONSTRAINT?
Most studies: How do humans control reaching movements far from constraint 

boundaries (Wang et al., 2001; Flanagan and Lolley, 2001; Todorov and Jordan, 1998) or how do humans 

avoid obstacles?

• T. Petrič, C.S. Simpson, A. Ude and A. J. Ijspeert, "Hammering Does Not Fit Fitts' Law." Frontiers in computational neuroscience, 2017
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Hammering task

How does the existing models of motor control cope with a periodic targeted impact 

task extended from Bernstein’s seminal work: hammering a nail into wood.
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Experimental setup of the study.

• Can we use Fitts’ 

law to predict 

timings ?
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~220 g
~220 g ~400 g

~400 g

Hammering frequencies of 1, 2, 3, 4, and 5 Hz were used.

Different cases of hammering were tested
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394 g 214 g

Different cases of hammering were tested
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Maximal impact forces

The heavy hammers 

generally had lower impact 

forces per unit mass than 

the lighter hammers across 

hammering frequencies
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Maximal height

Height of the hammer head 

decreases as hammering 

frequency increases
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Fitts’ law results for hammering

• Fitts’ law (gray lines):

• Better fit with new model 

(‘Inverted’ Fitts’ law):

• Fitts’ Law does not appear to 

follow the contours of the 

experimental data (gray traces)
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Human movement is thought to be optimally control

• Human hammering is a difficult control task due to the need to balance energy 

transfer to the nail with accuracy.

• We hypothesize that the human nervous system determines an optimal tradeoff 

between maximal impact velocity (complete the task in the most effective manner) 

and minimal effort. 

• We thus determine the optimal joint torques by minimizing the cost function:

Expertise Maximize energy transfer

Minimize energy consumption/signal dependent noise
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What was optimized for hammering task

• At low hammering frequencies ■

(greater time between impacts) 

subjects emphasize effort 

conservation.

• At high hammering frequencies ▲

(less time between impacts) subjects 

emphasize energy transfer to the nail.

• No constant relationship for all 

hammering speeds.
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TAKE HOME MESSAGE
Neuromechanical modeling is a powerful tool that can be successfully used as the 

underlying basis for control of collaborative robots.


