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e 2D dynamical system
* Aka.: planar system

*x=f(xy)

v =9Xy),

 f and g are the vector fields that describes the evolution of the 2D
state variables x(t) and y(t)

* Examples:
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We can get oscillations in 2D

Center

 Can be observed In linear
systems

* The amplitude of
oscillation typically depend
on the initial conditions.
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Limit cycles

* |solated periodic orbits In
the phase space

 Are inherently a nonlinear
phenomenon

« Usually is difficult to guess
the existence of the limit

cycles only by looking at
the set of ODEs

15

We can get oscillations in 2D

t=-—y+x(l-2* —y°), y=x+y(l - 2% - y°)
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Pool of oscillators

(original approach)

 Extracts the frequency and phase
of the input signal

» Based on a pool of adaptive
frequency oscillators

» Feedback loop allows extraction of =] .
several frequency components v

* No additional signal
transformations are needed (e.g.
FFT)

» Significant drawback: requires a
logic algorithm
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. Redesign the pool of oscillators

Pool of AFOs: AFO with adaptive Fourier series:

Q. P

¢ =Q —Kesin(g),

Q =—-Kesin(g),

Petri¢ T., Gams A., ljspeert A., Zlajpah L., On-line frequency adaptation and movement imitation for rhythmic robotic tasks, The international journal of robotics research, 2011.



:« Towards robot control using adaptive limit
cycles

 Basic idea: approaches that combine both frequency extraction and
waveform learning:
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* Original two-layered imitation system [1]:
 Extracting the frequency }(AFO)

* Learning the waveform
- Modulating the waveform [ (°M7)

1. GamsA, ljspeert A, Schaal S., Lenarci¢ J., On-line learning and modulation of periodic movements with nonlinear dynamical systems, Autonomous robots



AFO + (DMP || CMP)

* DMP « CMP

Summary
This video shows cooperative rope turning
by a human and a robot.

On-line learning and
frequency modulation

» T.Petric, A. Gams, L. Colasanto, A. J. ljspeert, and A. Ude, “Accelerated Sensorimotor Learning of Compliant Movement Primitives” IEEE Transactions on Robotics, 2018
« Denisa, A. Gams, A. Ude, and T. Petric, “Learning Compliant Movement Primitives Through Demonstration and Statistical Generalization” IEEE/ASME Trans. Mechatronics, 2016.



Phase-synchronization

)

* Original AFS * AFS — with phase synchronization

¢ = Q — Kesin( ¢),

¢ = Q — Kesin(¢),
(O = —Kesin( ¢),

QO = —Kessin( ¢),

#

M
y=ua,+ Z(ai cos(i¢p) + B; sin(ig)),
i=1

M M
9= o+ ) (arcos(ip)) + ) (Bysin(jp)),
i=1 =2

&y = ne, @y = 1e,

a; = ncos(ip)e,

Bj =nsin(jo)e,

a; =ncos(ig)e,

B; = nsinCip)e,
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2« Convergence of an AFO and P-AFO systems

AFO

== = Tgrget P-AFO
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Robots - torque control
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* P-AFS — adaptive phase oscillator
* P-DMP — periodic dynamic movement primitive
* P-TP — periodic torque primitive




P-DMP - Dynamic Movement Primitives

« Dynamic Movement Primitives = nonlinear system of differential equations

 Periodic case (ljspeert, Nakanishi & Schaal, 2002):
Dynamic Movement Primitives

Already frequency and
> phase dependent

Kernel functions

¥, =exp(h(cos(p—¢)-1)), 7,

 DMPs are not explicitly dependent on time.
 DMPs can easily be modulated to adapt to different conditions




. P-TP — Torque primitive

« Corresponding torgues are encoded as a linear combination of basis functions

 Original TP

» P-TP — periodic torque primitive
Ziz1 Zj=1 Vi ¥i($) % (@)
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Tr(Q, @) =

Kernel functions Kernel functions
W, =exp(h(cos(¢—c;)-1)), W;(h) = exp (h‘f’ (COS (¢ —cf

Target function Y; () = exp (—hﬂ(ﬂ B Ciﬂ)z) O &
er(t) = frar(t) — wir(t) ¥
far® = 7(© A

Regression T, = Kye + Kgé + K;é

W =w + ¥R (e, (1),

Feedback error learning

vij =Kyt




0250

02

0.15 |

0.1 H




Learning of internal dynamical models
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Learning of internal dynamical models Ep

=- AFO: A1 = B1 =.06 AFO: A1 = B1 =.03 AFO: A1 = B1 =0 AFO: A1 = B1 =0.3 AFO: A1 = B1 =0.6
P-AFO: A1 =-0.6 P-AFO: A1 =-0.3 P-AFO: A1 =0 P-AFO: A1 =0.3 P-AFO: A1 =0.6
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Physically simulated human elbow stretching tasks

Without P-TPs Learning P-TPs Validation P-TPs
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P-TPs weight matrix values
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TOWARDS PHASE-STATE SYSTEM



Phase portrait for 2D system

 Trajectories In
phase portrait
does not cross
each other

« Consequence of
existence and
uniqueness
property of
solution




Relaxation oscillators

* Exhibits fast and slow time scale
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i

2D uncoupled system - bifurcation
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Homoclinic and heteroclinic trajectories

* A trajectory is homoclinic if it originates from the terminates at the
same equilibrium point

* Atrajectory Is heteroclinic If it originates at one equilibrium and
terminates at the different equilibrium point

Heteroclinic channel

Homoclinic channel




Towards dynamical system for continuous
and reactive behaviors

 Network of Stable Heteroclinic
Channels (SHC)

x=xo(ot—=P-x")-n(t)+6(¢)

* |t Is essentially a state-phase-
system

e All transitions are also reversible

* The state vector can be used to
generate required profiles, which
are state depended.







States/Transition

Example of stopping and leaving
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« Adding a negative input bias causes the system to stop at this state,
adding a non-negative pulse at t=6s triggers the continuation of the

sequence of states.

A b ¢



States/Trar
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* We can still force the system to transition to any state at any time by applying a
large enough pulse to bias input

» Useful to implement resets and to enter states that are not reachable during

normal operation (i.e. error states)



o0
‘e ropabdIIStC AeCISIONS
[ J
= i = =] = T T — — = =
" /
S | | t‘ . =
§ | |
H S Tupliem r T . - v r AR SO BERl SE B - -
= f\ } | {1 \ }I | | A ll' \ A {\ |
=25 ’ et E N ' \ b
el /l / / | AReE s [ | i ! J | ‘ |
s Qs vl R B0 B | |
T 2 - | & | e - - - - - I - | = - - - | - | - - - - | - -
A | ! | | | ' | ' |
15 L ' | l s SRS B | |
| | " [ |
1— = = —_— = = = = = = = e = = e = = e em o = = = e e _— - ——
0 5 10 15 20 25 30
T|s|

* Built-in ability to select transition probabillity.

* In this example, state 3 Is visited 3 times more
often than state 4.




. Slowing Down and Speeding Up TransitionsZg
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» A major distinguishing feature of the phase state machines as compared
1ao regular (discrete) state machines is the transitions of non-negligible
uraftion.

* The transition periods (phase velocities) can be adjusted individually for

each transition m




« Combined with Gaussian Mixture
Models (GMM)

Human

motion m m States

e All transitions are also reversible

* The state vector can be used to
generate required profiles, which
are state depended.

Petri¢, T., et al. "Exoskeleton Control Based on Network of Stable Heteroclinic Channels (SHC) Combined
with Gaussian Mixture Models (GMM)." International Symposium on Advances in Robot Kinematics.
Springer, Cham, 2020.

GAMA




SHC for Continuous, Seguential and
Reactive Behaviors




SHC controller

Feedback to human
sensory system Robot state

Feedback
Interface .

Feedforward
: Interface
Human motion and Motor command
force interaction
\\ ,l
N 7
\'4

Forces Joints and

at hands




s Simulation example Ea)
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