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2D dynamical system
• Aka.: planar system

• ሶ𝑥 = 𝑓 𝑥, 𝑦

• ሶ𝑦 = 𝑔 𝑥, 𝑦 ,

• f and g are the vector fields that describes the evolution of the 2D 
state variables x(t) and y(t)

• Examples: 

Note: a nullcline is a curve in 

the phase plane on which the 

vector field is defined by the 

differential equation points in a 

particular direction.



We can get oscillations in 2D

Center

• Can be observed in linear 
systems

• The amplitude of 
oscillation typically depend 
on the initial conditions.



Limit cycles

• Isolated periodic orbits in 
the phase space

• Are inherently a nonlinear 
phenomenon

• Usually is difficult to guess 
the existence of the limit 
cycles only by looking at 
the set of ODEs

We can get oscillations in 2D



Pool of oscillators

• Extracts the frequency and phase 
of the input signal

• Based on a pool of adaptive 
frequency oscillators

• Feedback loop allows extraction of 
several frequency components

• No additional signal 
transformations are needed (e.g. 
FFT)

• Significant drawback: requires a 
logic algorithm

(original approach)



Redesign the pool of oscillators

sin( ),Ke =−

sin( ),Ke  = −

sin( ),i i iKe  = −

sin( ),i iKe = −

Pool of AFOs: AFO with adaptive Fourier series:

Petrič T., Gams A., Ijspeert A., Žlajpah L., On-line frequency adaptation and movement imitation for rhythmic robotic tasks, The international journal of robotics research, 2011.



Towards robot control using adaptive limit 
cycles 

• Basic idea: approaches that combine both frequency extraction and 
waveform learning:

• Original two-layered imitation system [1]:
• Extracting the frequency 
• Adaptation to input signal
• Learning the waveform
• Modulating the waveform

}
}

(AFO)

(DMP)

1. Gams A., Ijspeert A., Schaal S., Lenarčič J., On-line learning and modulation of periodic movements with nonlinear dynamical systems, Autonomous robots

AFO DMP



• DMP • CMP
AFO + (DMP || CMP)

On-line learning and 

frequency modulation 

remains open challenge

• T. Petric, A. Gams, L. Colasanto, A. J. Ijspeert, and A. Ude, “Accelerated Sensorimotor Learning of Compliant Movement Primitives” IEEE Transactions on Robotics, 2018

• Denisa, A. Gams, A. Ude, and T. Petric, “Learning Compliant Movement Primitives Through Demonstration and Statistical Generalization” IEEE/ASME Trans. Mechatronics, 2016.



Phase-synchronization

• Original AFS

ො𝑦 = 𝛼0 +෍

𝑖=1

𝑀

𝛼𝑖 cos( 𝑖𝜙) +෍

𝑗=2

𝑀

𝛽𝑗 sin( 𝑗𝜙) ,

• AFS – with phase synchronization

ሶ𝜙 = Ω − 𝐾𝑒 sin(𝜙),

ሶΩ = −𝐾𝑒 sin(𝜙),

𝑒 = 𝑦𝑖𝑛 − ො𝑦,

ሶ𝛼𝑜 = 𝜂𝑒,

ሶ𝛼𝑖 = 𝜂 cos( 𝑖𝜙)𝑒,

ሶ𝛽𝑖 = 𝜂 sin( 𝑖𝜙)𝑒,

ො𝑦 = 𝛼0 +෍

𝑖=1

𝑀

𝛼𝑖 cos( 𝑖𝜙) + 𝛽𝑖 sin( 𝑖𝜙) ,

ሶ𝜙 = Ω − 𝐾𝑒 sin(𝜙),

ሶΩ = −𝐾𝑒 sin(𝜙),

𝑒 = 𝑦𝑖𝑛 − ො𝑦,

ሶ𝛼𝑜 = 𝜂𝑒,

ሶ𝛼𝑖 = 𝜂 cos( 𝑖𝜙)𝑒,

ሶ𝛽𝑗 = 𝜂 sin( 𝑗𝜙)𝑒,



Convergence of an AFO and P-AFO systems



Robots - torque control

• P-AFS – adaptive phase oscillator

• P-DMP – periodic dynamic movement primitive

• P-TP – periodic torque primitive



P-DMP - Dynamic Movement Primitives

• Dynamic Movement Primitives = nonlinear system of differential equations

• Periodic case (Ijspeert, Nakanishi & Schaal, 2002):

• DMPs are not explicitly dependent on time.

• DMPs can easily be modulated to adapt to different conditions
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Dynamic Movement Primitives

Already frequency and 

phase dependent



P-TP – Torque primitive
• Corresponding torques are encoded as a linear combination of basis functions

𝜏𝑓(𝜙) =
σ𝑖=1
𝑁 Ψ𝑖𝑤𝑖

σ𝑖=1
𝑁 Ψ𝑖

1 1 ( ) ( ),t t t

i i i i rw w P r t e t+ += +

Regression

( )( )exp cos( ) 1 ,i ih c = − −

Kernel functions

Target function

𝑒𝑟 𝑡 = 𝑓tar t − wi
tr(t)

𝑓tar t = 𝜏(t)

• Original TP • P-TP – periodic torque primitive

𝜏𝑓(Ω, 𝜙) =
σ𝑖=1
𝑁 σ𝑗=1

𝐾 𝜈𝑖,𝑗𝜓𝑖(𝜙)Ψ𝑗(Ω)

σ𝑖=1
𝑁 σ𝑗=1

𝐾 𝜓𝑖(𝜙)Ψ𝑗(Ω)

Kernel functions

𝜓𝑖 𝜙 = exp ℎ𝜙 cos 𝜙 − 𝑐𝑖
𝜙

− 1

Ψ𝑗 Ω = exp −ℎΩ Ω − 𝑐𝑖
Ω 2

Feedback error learning

𝜏𝑢 = 𝜏𝑏 + 𝜏𝑓

ሶ𝜈𝑖,𝑗 = Κ𝜈𝜏𝑏

𝜏𝑏 = 𝐾𝑝𝑒 + 𝐾𝑑 ሶe + 𝐾𝑖 ሷ𝑒



Learning of internal dynamical models

lim
𝑡→∞

𝑒 = 0



Learning of internal dynamical models



Learning of internal dynamical models



Physically simulated human elbow stretching tasks



P-TPs weight matrix values





TOWARDS PHASE-STATE SYSTEM



Phase portrait for 2D system

• Trajectories in 
phase portrait 
does not cross 
each other

• Consequence of 
existence and 
uniqueness 
property of 
solution



Relaxation oscillators

• Exhibits fast and slow time scale

A A

B B

CC

D D

A B

CD



2D uncoupled system - bifurcation
• ሶ𝑥 = 𝑎𝑥, ሶ𝑦 = −𝑦,

Note: trajectory approaches the stable 

fixed point in the direction tangential 

to the slower axis



Homoclinic and heteroclinic trajectories

• A trajectory is homoclinic if it originates from the terminates at the 
same equilibrium point

• A trajectory is heteroclinic if it originates at one equilibrium and 
terminates at the different equilibrium point

Heteroclinic channel

Homoclinic channel



Towards dynamical system for continuous 
and reactive behaviors

• Network of Stable Heteroclinic
Channels (SHC)

• It is essentially a state-phase-
system

• All transitions are also reversible

• The state vector can be used to 
generate required profiles, which 
are state depended. Saddle



Attractor shape for a three-state cycle

1 2 3



Example of stopping and leaving

1 2 3

• Adding a negative input bias causes the system to stop at this state, 

adding a non-negative pulse at t=6s triggers the continuation of the 

sequence of states.



Example of excepting to error state

• We can still force the system to transition to any state at any time by applying a 
large enough pulse to bias input

• Useful to implement resets and to enter states that are ​not reachable during 
normal operation (i.e. error states)

1 2 3 4



Probabilistic decisions

• Built-in ability to select transition probability.

• In this example, state 3 is visited 3 times more 
often than state 4. 1 2

3

4



Slowing Down and Speeding Up Transitions

• A major distinguishing feature of the phase state machines as compared 
to regular (discrete) state machines is the transitions of non-negligible 
duration. 

• The transition periods (phase velocities) can be adjusted individually for 
each transition

1 2 3



SHC and GMM for clasification

• Combined with Gaussian Mixture
Models (GMM)

• All transitions are also reversible

• The state vector can be used to 
generate required profiles, which 
are state depended.

Petrič, T., et al. "Exoskeleton Control Based on Network of Stable Heteroclinic Channels (SHC) Combined

with Gaussian Mixture Models (GMM)." International Symposium on Advances in Robot Kinematics. 

Springer, Cham, 2020.

GMM SHC

Human

motion States



SHC for Continuous, Sequential and 
Reactive Behaviors



SHC controller

Motor commandHuman motion and 

force interaction  

Robot state

Feedback to human 

sensory system 

Feedforward

Interface

Feedback

Interface

SHC CMP

Forces

at hands

Joints and

CoM reference



Simulation example

Standing

Squatting

Standing with support

Squatting

Standing

Standing 

with support

1 2 3
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