
Intelligent Robot
Control

Lecture 1: Introduction and overview

Tadej Petrič

tadej.petric@ijs.si

mailto:tadej.petric@ijs.si

General information

• Prerequisites

? Knowledge on robot kinematics and dynamics is necessary!
? Knowledge on automatic control is useful.

• Aims

? Knowledge of robot kinematics, dynamics, simulation, and control.

• Textbooks

? Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G., Robotics:
Modelling, Planning and Control, Springer-Verlag, London, UK,
2009.

? Siciliano, B.; Khatib, O.(Eds.), Springer Handbook of Robotics,
Springer-Verlag Berlin Heidelberg 2008.

• Materials

? \\www.ijs.si/~leon/mps/

• Contact

? � leon.zlajpah@ijs.si

Robots & Robotics

“A robot is a machine — especially one programmable by a
computer — capable of carrying out a complex series of actions
automatically. Robots can be guided by an external control device
or the control may be embedded within. Robots may be constructed
to take on human form but most robots are machines designed to
perform a task with no regard to how they look.”

“Robotics is an interdisciplinary branch of engineering and science
that includes mechanical engineering, electrical engineering, computer
science, and others. Robotics deals with the design, construction,
operation, and use of robots, as well as computer systems for their
control, sensory feedback, and information processing.”

Motion ⇔ Forces ⇔ Control

Program

• Introduction
? kinematics and dynamics of robot mechanisms
? joint space and task space
? motion planning
? robot control

• Modeling and simulation of robot mechanisms
? simulation in MATLAB/Simulink, HAPTIX, ...
? real-time simulation

• Robot control systems
? dynamic manipulation using force, vision or tactile sensors
? compliance robot control
? optimal robot control

• Redundant robot systems
? task decomposition
? redundancy resolution
? obstacle avoidance

• Robot cooperation
? Kinematics and dynamics of dual-arm robots
? Control of dual-arm robots

Position and orientation of rigid bodies

Frame FB is attached to the body.

Position of the body p ∈ R3 expressed in base
frame FA:

p =ApAB = [AxAB
AyAB

AzAB]T

Orientation of the body R ∈ SO(3)⊂ R3×3

expressed in base frame FA:

R =ARB = [AxB
AyB

AzB]T = [n s a]
Representation of point C (fixed in FB)in
different frames:

pAC = pAB + pBC = pAB + RB
BpBC

BpBC = −RT
B pAB + RT

B pAC

Orientation representation

The orientation representation with rotation matrix R is redundant due to
the orthonormality constraints. Using a set of Euler angles Φ = [α, β, γ]T

we can obtain a minimal representation of the orientation as

R(Φ) = Ra(α)Rb(β)Rc(γ)

The main drawback of Euler angles representation
are representation singularities.

Alternatives are angle/axis representation of the
rotation matrix

R = R(ϕ, r) pd, Rd

pe, Re

'

r

where ϕ and r are the angle and the vector of rotation,

or Euler parameters (unit quaternions)

Q = {η, ε} = {cos(ϕ/2) , sin(ϕ/2)r}

Homogenous transformation

Homogenous transformation describes the relation between two
reference frames, i.e. the relative pose consisting of position and
orientation.

pAC = pAB + pBC = pAB + RB
BpBC

Ap̂AC =

[
ApBC

1

]
=

[
ARB pAB

0 0 0 1

][
BpBC

1

]
= ATB

Bp̂BC

Some properties:

• Inverse: (ATB)−1 =

[
ART

B −ART
B
ApB

0 0 0 1

]
=

[
BRA

BpA

0 0 0 1

]
= BTA

• Compound transformations: ATC = ATB BTC (not commutative!)

Linear and angular velocities of rigid bodies

Linear velocity ṗ ∈ R3 of a rigid body is a vector equal to the time rate
of change of its linear position.

Angular velocity ω ∈ R3 is a vector quantity that describes the angular
speed at which the orientation of the rigid body is changing and the
instantaneous axis about which the body is rotating.

Body B:

ṗ =
dp

dt
S(ω) =

dR

dt
RT

Fixed point C on body B:

ṗC = ṗ+ω×r = ṗ+S(r)ω ωC = ω

S(a) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 ; p =

∫
ṗ dt ; R 6=

∫
ω dt ; Aω =A ṗB +B ṗ

Kinematics

Robot is seen as (open) kinematic chain of rigid bodies interconnected
by (revolute or prismatic) joints.

x
.

q2

q1

qn

.

.

.

Parameterization:

Unambiguous and minimal characterization
of the robot configuration

n = degrees of freedom (DOF)
n = robot joints (rotational or translational)

Configuration on n-DOF robot is described by joint coordinates

q = [q1, q2, . . . , qn]T qi ∈ Qi = [qi,min, qi,max]

The configuration space C is the space where the joint variables q are
defined

C : Q1 ×Q2 × · · · ×Qn

Robot kinematic types

2R Manipulator

C : [−π, π]× [−π, π]

Robot pose

Frame Fb attached to the end-effector.

End-effector position Oe (operational point)
in base coordinate frame Fb:

Te =

[
R(q) p(q)
0 1

]

The operational space O is space, where the positions/orientations of the
robot end-effector are defined (6-dimensional Cartesian space).

Reachable workspace: is the set of all positions p which the robot can
reach with at least one orientation

Dextrous workspace: is the set of all positions p which the robot can reach
with any feasible orientation

Direct kinematics

We relate the configuration to the pose, i.e. position and orientation of
the end-effector.

x = f(q)

The direct kinematic function f depends on what x represents.

Analytic solution of f can be obtained:

• by geometric inspection
• using homogenous transformations: Te = T1

1T2 · · ·n−1 Tn
nTE

Planar 2R robot:

L1

L2

x

q1

q2

ϕ
x =

x

y

ϕ

 =

L1 cos(q1) + L2 cos(q1 + q2)

L1 sin(q1) + L2 sin(q1 + q2)

q1 + q2

Te =
2∑
i=1

cos(qi) − sin(qi) 0 Li cos(qi)

sin(qi) cos(qi) 0 Li sin(qi)

0 0 1 0

0 0 0 1

Task space

Task space T ⊆ O is the space where the operation of robot is required.

DOFs needed for some common tasks:

m = 2

• pointing in space (two angles)
• positioning in plane (two positions)

m = 3

• orientation in space (three angles)
• positioning and orientation in plane (two positions and one angle)

m = 5

• positioning and pointing in space (three positions and two angles)

m = 6

• positioning and orientation in space (three positions and three angles)

Direct kinematics map

Direct (forward) kinematics represents the mapping form C to T .

Why this mapping is important:

• defines the workspace
• trajectory planning
• motion control

Different compact descriptions of positional and/or orientation (pose)
components:

x = {p,R} Position vector, Rotation matrix
x = {p, Q} Position vector, Quaternion
x = [pT ,φT]T Position vector, Euler angles

where
p = [x, y, z]T φ = [α, β, γ]T Q = {η, ε}

Description selection depends on the task.

Inverse kinematics

The inverse kinematics problem is: given the position of the end-effector
x in T find the joint coordinates q

q = f−1(x)

Problems:

Existence: For a solution x must be in O.

Uniqueness: Multiple solutions exist.

Methods: Analytical (not always possible) or numerical (Newton,
gradient).

Planar 2R robot

Task space is the position x of the end-effector and x ∈ O
L1 = L2 L1 > L2 L1 < L2

L1

L2

x

q1

q2

ϕ = atan2(y, x);

q =

ϕ±

acos(x2 + y2 + L2
1 − L2

2)

2L1

√
x2 + y2

∓
acos(x2 + y2 − L2

1 − L2
2)

2L1L2

Inverse kinematics - numerical solution

When an analytical (close-form) solution q for x(f(q) does not exists or it
is not easy to be found we can solve it using numerical methods.

Newton method:

q(k + 1) = q(k) +
∂f(q(k))

∂q
(x− f(q(k)))

Gradient method:

q(k + 1) = q(k)− k∇qH(q(k)) H(q) =
1

2
‖x− f(q)‖2

Both methods are actually feedback schemes and are similar to kinematic
controllers.

Problems:

• singularities
• multiple solutions (redundancy)
• convergence

Differential kinematics

Differential kinematics is the relation between the velocities in the joint
space and velocities in the task space.

A: Map joint velocities to end-effector instantaneous linear and angular
velocities:

v =

[
ṗ
ω

]
=

[
Jp
Jo

]
q̇ = J(q)q̇

S(ω) =
dR

dt
R

J(q) is geometric (or basic) Jacobian matrix - always (6× n) matrix.

J =

[
Jp

Jo

]
=

[
Jp1 · · · Jpn

Jo1 · · · Jon

]

Jacobian computation

To get the geometric Jacobian J contributions of joints velocities for the
linear and angular velocity of the end-effector are calculated separately

ṗ =
n∑
i=1

∂p

∂qi
q̇i =

n∑
i=1

Jpiq̇i

ω =
n∑
i=1

ωi−1,i =
n∑
i=1

Joiq̇i

where

[
Jpi

Joi

]
=

[
zi

0

]
for a prismatic joint[

zi × (p− pi− 1)

zi

]
for a revolute joint

Differential kinematics . . .

B: Map joint velocities to time derivative of position and angles in a
minimal representation of orientation — obtained by time differentiation
of x = [x, y, z, α, β, γ]T

dx

dt
=

df(q)

dt
=
∂f(q)

∂q

dq

dt

ẋ = JAq̇

JA =
∂f(q)

∂q
(m× n) analytical Jacobian matrix

Note that in general

ω 6=
dφ

dt
and J(q) = T(q)JA(q)

Jacobians for planar 2R robot

L1

L2

q1

q2

q̇1

q̇2

ϕ̇
ẋ

Geometric Jacobian:

J =

−L1 sin(q1)− L2 sin(q1 + q2) −L2sin(q1 + q2)

L1 cos(q1) + L2 cos(q1 + q2) L2cos(q1 + q2)

0 0

0 0

0 0

1 1

Analytical Jacobian:

x =

 x

y

ϕ

 =

L1 cos(q1) + L2 cos(q1 + q2)

L1 sin(q1) + L2 sin(q1 + q2)

q1 + q2

J =

 −L1 sin(q1)− L2 sin(q1 + q2) −L2sin(q1 + q2)

L1 cos(q1) + L2 cos(q1 + q2) L2cos(q1 + q2)

1 1

Acceleration and higher order relations

Differential relationships between motion in the joint space and motion in
the task space can be established at acceleration level (second order) or at
higher orders

velocity ẋ = JAq̇

acceleration ẍ = JAq̈ + J̇Aq̇

jerk
...
x = JA

...
q + 2J̇Aq̈ + J̈Aq̇

snap
....
x = JA

....
q + . . .

The same holds also for the instantaneous velocity, accelerations, . . .

velocity v = Jq̇

acceleration v̇ = Jq̈ + J̇q̇

jerk v̈ = J
...
q + 2J̇q̈ + J̈q̇

snap
...
v = J

....
q + . . .

Kinematics in arbitrary task frame

End-effector location tT in St can be
expressed as

tT =

[
tR tp
0 1

]
=

[
RT
t −RT

t pt
0 1

] [
R p
0 1

]
=

[
RT
t R RT

t (p− pt)
0 1

]
Velocities:

tv = R̃T
t v − R̃T

t Jtvt ,

R̃t =

[
Rt 03×3

03×3 Rt

]
Jt =

[
I3×3 −S(p− pt)
03×3 I3×3

]

Statics

The goal of statics is to determine the relationship between the generalized
forces acting on the end-effector and generalized joint torques.

F

�

�

�

2

n

1

Generalized joint torques: τ = [τ1, τ2, . . . , τn]T

Generalized end-effector forces: F = [Fx, Fy, Fz,Mx,My,Mz]T

Static relation between F and τ (obtained using virtual work
principle):

τ = JTF

Dynamics of rigid bodies

Euler-Lagrange approach:
Energy based; Simpler and more intuitive, and also more suitable
to understand the effects of changes in the mechanical parameters;
Analytical model. Drawbacks: Not computationally efficient.

Using total kinetic energy T and potential energy U the Lagrangian of
the rigid body is defined as:

L = T − U

The generalized forces τ are calculated using the Lagrangian equation:

d

dt

(
∂L
∂q̇

)T
−
(
∂L
∂q

)T
= τ

Newton-Euler approach:
Balance of forces/torques; Efficient recursive algorithm; Suitable for real-
time control. Drawback: Numeric solution (non closed form)

Robot dynamic models

Dynamic models provide the relation between the generalized forces (joint
and end-effector!) and the motion of the robot considering all dynamic
properties of the system.

Direct dynamics: From known generalized forces τ(t) and Fe(t) determine
the motion q̈(t) (q̈(t):

τ(t),Fe(t)⇒ q̈(t)

Inverse dynamics: From known motion determine generalized forces τ(t):

q̈(t), q̇(t), q(t)⇒ τ(t)

Robot dynamic models . . .

Using Lagrangian formulation and considering contribution of external
forces the equations of motion of a robot are given in the form

τ = H(q)q̈ + C(q, q̇)q̇ + g(q) +D(q̇) + JTF

H(q) Rn×n inertia matrix (symmetric, positive definite)
C(q, q̇)q̇ Rn vector of centripetal and Coriolis forces
g(q) Rn vector of gravity forces
D(q̇) Rn vector of friction forces
F Rm vector of external forces/torques

Dynamic model of 2R robot

Lc1,m1, I1

Lc2,m2, I2

q1

q2

τ1

τ2

F T1 =
1

2
(m1L

2
c1 + I1)q̇2

1

U1 = m1gLc1 sin(q1)

T2 =
1

2
(m2x

T
1x1 + I2q̇

2
1)

U2 = m2g(L1 sin(q1) + Lc2 sin(q1 + q2))

xT
1x1 = L1q̇

2
1 + L2

c2(q̇2
1 + q̇2

2) + 2L1Lc2 cos(q2)(q̇2
1 + q̇1q̇

2
2)

H =

(m1L2
c1 +m2(L1 + L2

c2 + 2L1Lc2 cos(q2)) + I1 0

0 m2(L2
c2 + L1Lc2 cos(q2)) + I2

C = (−m2L− 1Lc2 sin(q2))

 q̇2 (q̇1 + q̇2)

−q̇1 0

g =

m1gLc1 cos(q1) +m2g(L1 cos(q1) + Lc2 cos(q1 + q2))

m2gLc2 cos(q1 + q2)

