
Intelligent Robot 
Control

Lecture 2: Trajectory planning

Tadej Petrič

tadej.petric@ijs.si

mailto:tadej.petric@ijs.si


Trajectory planning

Trajectory planning is part of the task planning procedure. Typically, the
robot task includes some actions, which are described as a sequence of
poses or robot configurations. planning the motion from one to another
pose is crucial for the correct operation of the robot.

When planning the motion of the robot we have to specify two aspect of
the desired trajectory:

• Geometric path, which defines where the robot should be.

• Timing, which defines the time evolution of the path (when the robot
has to be at a certain position)

and consider all constraints (continuity, smoothness, . . . ) important for
the task or due to the robot itself (joint limit, actuator limits, . . . ).



Trajectories

Geometric path can be defined in the task space or in the joint space:

x = x(s) or q = q(s)

where s is the path parameter. Definig s as a function of time (timing)

s = s(t)

we get the trajectory.

In practice we want to have smooth motion and therefore, the time
evolution has to be such that the trajectory is a continous function up
to a given order of derivation (usually at least bounded accelerations).

Discrete path: point-to-point (PTP) or multiple points (via points,
nodes).

Continuous path: linear, circular, or other analytic functions.



Polynomial trajectories

The trajectory is specified by defining some
points and interpolation between them using
polynomial functions of proper degree n.

x(t) = a0 + a1t+ a2t
2 + · · ·+ ant

n

• Common in industrial robotics.

• Can be applied for Cartesian or joint space
motion.

• The degree n defines the smoothness.

• Polinomial parameters calculated using
boundary conditions in points.

Trapezoidal velocity profile

5th order polynomial profile



Spline trajectories

In general, defining path over n points requires a polynomial function of
degree n − 1. However, the resulting motion can have unnecessary large
osculations between the points.

Solution: Use more lower degree polynomials representing path segments
and glue them smoothly (using boundary conditions in intermediate points)
into final path ⇒ Splines.



Path parametrization using kernel functions

Task is to follow the wire. The path is obtained
by captureing a lot of points.

To obtain computational efficient
representation of the path, an appropriate
parametrization of captured points is needed.
Parametrization has to assure required accuracy
of the approximated path.

Gausian kernel functions:

Ψi(s) = e−hi(s−ci)
2

x(s) =

∑m
i=1wiΨi(s)∑m
i=1 Ψi(s)

Weights wi are obtained by
minimizing 1

2
‖xm − x(s)‖2,

regression, or other methods.



What is robot control?

Robot control is the means by which the sensing and actions of a robot
are coordinated.

Robot control is defining joint torques for actuators in joints necessary to
execute the desired task.

The achievable performances depend on:

• control techniques used to solve control problem

• implementation of the control algorithms

• mechanical design of the robot

• configuration of the robot



Models in control

Robot

Predicted output

Action Output

Model

Inverse
model

Desired output
and

environment

To predict the motion caused by action we need the model of the robot
and the environment.

To define the action necessary for the desired motion we need the inverse
model.

Using observations of the systems states to change actions ⇒ Close-loop
control



Robot control levels

Robot control is not just a close-loop control.

Control levels:

Strategic
Learning
Task planning

Tactic
Motion coordination
Trajectories generation

Executive
Movement execution
Close-loop control

Higher control levels include more “intelligence”.

Which levels are implemented depends on the task complexity.

Higher task complexity ⇒ Higher levels included



Control strategies

The selected control strategy influences the characteristics of the robot
system.

The strategy selection depends on:

• robot task
? task workspace
? free motion or motion in

contact
? constraints (e.g. velocity,

acceleration, torques)
? . . .

• mechanical structure of the
robot manipulator
• actuators (electric, hydraulic,

pneumatic)
• gears (ration, compliance,. . . )
• sensors (joint torques, external

forces, vision, . . . )
• . . .



Robot control approaches

Reactive Control: Don’t think, (re)act.

Deliberative (preplanned) Control: Think hard, act later.

Hybrid Control: Think and act separately and concurrently.

Behavior-Based Control: Think the way you act.



Basic robot control schemes

Typically for robots:

• Tasks are defined in operational workspace as end-effector motion
or end-effector forces.
• Robot actions are generated in the joint space.

⇓
Joint space control:

τq
r

Control qxr IK Robot

Task space control

F
Control xxr Robot



Independent control

Basic robot control is the decentralized control: each robot joint is an
independent servosystem and interactions between joint are considered as
disturbances.

τ
i

di

kv

kb

q
i

�Gp
iqr,i Gv

Kp

Kv

Actuatori
q

• Positioning and manipulation

• Standard techniques for control design (RL, LQR, . . . )

• Small interactions for high-ratio gears

• Widely used in industrial robots



Independent control: Example KUKA LWR

PTP motion:

∆qi = 0.2, i = 1, . . . ,7

Same Kp and Kd gains for
all joint controllers.



Inverse dynamics control

For high accuracy and fast motion the robot dynamics has to be considered
in the control.

Computed torques technique:

τu

q
•

q
H(q) Robot

C(q,q
•
)q

•
+g(q)

τ = H(q)u+ C(q, q̇)q̇ + g(q)
u = q̈

Due to compensation of nonlinearities and interactions in the close-loop the
robot system is decomposed into independent subsystems and the control
problem is reduced to a simpler problem of controlling independent linear
systems.



Inverse dynamics control . . .

The dynamic close-loop properties are defined by the selection of the outer
loop control algorithm. For example, using PD controller

u = q̈r + Kvėq + Kpeq

the close-loop dynamics of a system becomes

ëq + Kvėq + Kpeq = 0

Drawbacks:

• Exact dynamic robot model must be known
• High computational complexity

Solution: An approximate or partial model can be used. The errors are
compensated by the outer-loop control algorithms. Suitable approaches:

• Variable structure control
• Adaptive control
• Independent joint compensation



Inverse dynamics control: Example KUKA LWR

Joint space PTP motion:

∆qi = 0.2, i = 1, . . . ,7

Gains Kp and Kd for
the desired close-loop
behavior:

ëq+2
√

1000ėq+1000eq = 0



Compensators

• Some tasks require exact motion execution, i.e.
good trajectory tracking for fast motion.
• Close-loop control schemes do not assure the

required tracking accuracy.

ëq + Kvėq + Kpeq = 0

Tracking error can be reduced by using addition feedforward compensators.

Control

q
r

•

q
r

• •

qqr

Compensator

Robot

• Better accuracy without affecting the stability of the system.
• It is necessary to know the system (models).
• Real system constraints can influence the accuracy of the system.



Compensators: Example KUKA LWR

Linear motion between
two joint configurations.

Gains Kp and Kd for
the desired close-loop
behavior:

ëq+2
√

1000ėq+1000eq = 0

After t > 2s: q̇ dependent
compensator is active.

After t > 4s: q̈ dependent
compensator is added.



Task space control

Most tasks are defined as the end-effector motion, i.e. a motion the the
task space.

Using the kinematic transformation we could transform the task form task
space to joint space and design the control in joint space. When accurate
motion is required or different behavior in different task space directions ir
required, it is necessary to design the control in the task space.

Relation between the joint space velocities and the task space velocities

ẋ = Jq̇

If the inverse relation exists
q̇ = J†ẋ

then the dynamics of the robot system in the task space is given in the
form

F = Λ(x)ẍ+ Γ(x, ẋ)ẋ+ ξ(x)− Fext



Task space control: Example KUKA LWR

PTP motion in task-space

x = [x, y, z, α, β, γ]T

∆xi = 0.2, i = 1, . . . ,6

Same Kp and Kd gains for
task-space DOFs.



Robot in contact with environment

When the robot is in contact with the environment, its motion is
constrained and due to the contacts forces between the robot and the
environment arise.

F
eEnvironmentτ x

xe

Robot Fe = G(x− xe)

Dynamic interaction depends on the contact properties:

• inertial contact (object pushing)
• damping (sliding on surface)
• elastic contact (pushing on soft object)

The best description of the interaction is given by the contact forces.

To control the contact, the system should have a corresponding
compliance, which can passive or active.



Summary

Kinematics: geometrical relationships in terms of position/velocity
between the joint- and work-space.

Dynamics: relationships between the torques applied to the joints and the
consequent movements of the links.

Trajectory planning: planning of the desired motion of the manipulator.

Control: computation of the control actions (joint torques) necessary to
execute a desired motion.


